020-38315488
您的当前位置:网站首页 » 新闻中心 » 行业新闻 » 从零开始,构建数据化运营体系

从零开始,构建数据化运营体系
发布者:admin 发布日期:2017-02-22

数据化运营是一个近年来兴起的概念,它在运营的基础上,提出了以数据驱动决策的口号。

在了解数据化运营前,运营们有没有过如下的问题:

不同渠道,效果究竟是好是坏?

活跃数下降了,到底是因为什么原因?

这次活动推广成效如何?

发布了版本,用户喜不喜欢?

我们总是说传播,传播到底有多大?

这是产品和运营每天每时每刻都会遇到的问题。数据化运营,实际以解决这些问题为根本。它从来不是BAT的专属,也不是大数据的独宠,每一家互联网公司,都有适合的数据运营土壤。

 

数据运营体系,是数据分析的集合与应用,也是数据先行的战略,它不仅是运营人员的工作,也是产品、市场和研发的共同愿景。从管理角度,是自上而下的推动,如果领导不重视,那么执行者数据用得再好,也是半只腿走路。

如何构建数据化运营体系呢?以下是我的总结思考。

我将数据化运营体系划分成四层架构,每一层架构都逐步演进互相依赖,每一层又不可缺少。这四层分别是数据收集层,数据产品层,数据运营层,用户触达层。它是以运营人员为视角的框架。

 

02

数据收集层

 

数据化运营体系的底层是数据收集,数据是整个体系中的石油。

数据收集的核心是尽可能收集一切的数据,它有两个原则:宜早不宜晚,宜全不宜少。

宜早不宜晚,意思是产品从创立阶段,就需要有意识的收集数据,而不是等到公司发展到B轮、C轮才去收集。数据化运营贯彻产品全阶段,不同阶段有不同的运营方法。

宜全不宜少,指的是只有不合适的数据,而没有烂数据。像历史数据、变更记录或者细节处的数据,都存在价值。

需要收集的数据能划分成四个主要类型:行为数据、流量数据、业务数据、外部数据。

 

用户画像

用户画像是常用的数据产品,对产品和运营人员往往带有神秘色彩。它有两种解释,也是很多新手歧义的根源,一种用户画像属于市场营销和用户调研领域,叫做Persona,更准确的翻译是用户角色,描绘的是一个自然人的社会属性,用于用户需求和场景的确定。

而数据领域的用户画像,叫做Profile,是将一系列数据加工出来描述人物属性的数据标签。最知名的例子就是淘宝的千人千面:用户去购买孕期的孕妇产品,很大可能被打上孕妇标签;浏览了汽车相关商品,会被打上汽车兴趣的标签。

用户画像是一个依赖大数据和机器学习的复杂体系。准确丰富的用户画像能呈指数级的提高运营效果。

用户画像也有简单的用法,没有数据挖掘不要紧。用户的性别、年龄、地区这些信息不难拿到吧?用户行为简单做一个喜爱偏好区分也不难吧。那么我们就有用户画像V1.0了.

推荐系统,精准营销、广告投放都是常见的基于用户画像的应用。你要推送化妆品促销活动,选择女性标签的用户肯定有更高的成功率,更进一步,如果运营知道女性用户偏好哪个品类的化妆品,效果会更好。

用户画像可以通过已有数据提炼获得,比如拥有用户的身份证信息,就能准确获得性别、籍贯、出生年月这三个标签。也能通过算法计算获得,比如在淘宝购物遗留的收件人姓名,通过机器学习,以概率的形式获得买家是男是女,建国很大可能是男性,翠兰很大可能是女性。

用户画像是基于原始数据的加工,原始数据越全,用户画像就越丰富。

数据产品层中,我们将数据加工为指标,以其为核心,构建和规划数据产品。如何展现指标(BI),如何提高指标(算法),如何计算出指标(ETL),如何与指标组合(用户画像)。

我们现在获得了这些「产品」,接下来就是使用,运营和产品人员就是它们的用户。

 

03

数据运营

数据运营层,是运营人员将数据转化成运营策略。以人为主要生产力,和数据产品的计算机自动化对应。

在我们谈及具体的方法前,强调一下人的作用。不论我们前面打造了多好的数据产品,员工的数据化运营意识提高不上去,一切等于零。

对人的要求有三点:

其一,以数据做决策,既要知道数据能够做什么,也要知道数据做不了什么。前者很容易理解,我工作中遇到很多次,在有数据可以提供决策的情况下,依旧相信个人经验。这是应该规避的思维,不是一个人,而是团队要做到。

数据化运营也不是企业运营的灵丹妙药,得客观承认,公司体量越大,数据化运营所能发挥的效果也越好。在创业公司或者小公司,会受到一定的限制,比如没有技术支持,提升效果不够,数据体量缺乏等原因,造成优先级的延后。这是没办法的取舍问题,只能以解决问题为首先依据。

其二,是本身数据分析和运营水平不过关。虽然有意识地利用,可员工仅限于求平均数的水平,那么也别期待太高了。

这一点,得通过不断地系统培训,人员招聘解决。自上而下的倡导和发起是最好的结果,高层有数据化运营的战略和意识、管理层有数据化运营的指导经验,执行层能将数据化运营的落地,那么整个体系也推行成功了。

最后,是产品工具的使用。这是对员工的技能要求,诸如MySQL查询数据、BI多维度分析、精准营销、 AB测试、转化率分析,都是必须的。将数据相关的工具玩得顺溜,员工才能在发挥够大的价值。

运营和产品如何进行数据运营,具体的技巧和方法论太多了,我以核心思想为引子。大家着重了解思维。

不是全量,而是精细。不止精细,更是精益。

全量运营是一种集中运营的策略,活动、内容推送、营销、用户关系维护,这些方式如果针对所有的用户,这是运营资源的浪费,你不可能通过一种方式满足所有的用户,也不可能用一种方式做到最好。

用户间是有差异的,这种差异需要用精细化运营弥补。

精细是是将目标拆分成更细的粒度,全国销量变成上海销量北京销量、全年销量变成第一季度销量第二季度销量,用户变成新用户老用户。电商卖口罩,是卖给北京的用户好,还是海南的?促销化妆品,目标人群选择男人女人也是显而易见的。精细(拆分)是一种数据分析的思路,也是一种运营手段。

精益比精细更进一步,精细是手段,精益是目标。什么是精益?精益就是二八法则,找出最关键的用户。我们都知道要将化妆品卖给女人,但一定会有部分女人支付更多,20%的女人占了80%的销量,精益就是找准这20%。

对最适合的用户在最恰当的时机采取最合适的手段以产生最大的价值。

前面三个「最」说的是精细,后面一个「最」指的是精益:价值/目标最大化。我有CRM,那么就从CRM中找出最有价值的客户去维护;我有风险管理,就找出最可能违约的投资;要做活动,欢迎的是产出最大而不是薅羊毛的用户;积分中心,效果最好的只会是最优质的那批客户。

未来比现在重要,现在比过去重要。

这个第二个核心,数据化运营能够预测未来,把握当下。传统的运营方式,是知晓过去已经发生的事,销量是多少,活跃数是多少,这在日益严酷的竞争环境中还不够。

把握当下,是能获得数据的立即反馈。你要推广一个活动,可以提前挑选5%的用户做一个测试,及时获知用户的反馈,转化率高不高,响不响应,然后按照数据决定后续的运营是继续还是改进。这是技术带来的进步优势。

预测未来,是机器学习的领域,通过数据建模,获得概率性的预测,用户可不可能流失,会不会喜欢和购买这个商品,新上线的电影会否偏好…运营则利用这些概率针对性的运营。

如果限于技术无法使用机器学习,则需要根据现有数据趋势去估计,这取决于运营人员的经验和数据敏感性。

系统化与自动化

数据化运营体系的搭建过程中,运营人员会用到很多的工具。

用户积累到一定数量,我们考虑引入积分中心增加用户粘性;产品涉及到地推和销售人员,则要加入CRM(客户关系管理)以维系客群;O2O和电商,基本配置肯定有优惠券的发送;反馈越来越多,我们也需要客服中心解决各类疑问。这些与运营息息相关的工具,在数据运营体系中占据中重要的比例。

为了更好的达成目标,会将其独立成运营模块/运营后台。好的运营后台和用户端的产品同等重要,也需要后台产品经理规划。

以我们经常接触的优惠券为例,它肯定要设置一套规则,核心目标是财务数据,是优惠券成本和收入之间的平衡:你不能滥发,那肯定亏钱,也不能少发,用户连这东西都不知道。有哪些券、怎么发、发了多少用了多少、未来准备发多少、发了有多少没用掉,都是一套大框架的东西,于是做成了发券系统。

优惠券能和CRM结合,CRM通过几个指标将用户划分成了不同的价值和人群。这个用户特别喜欢花钱,那么优惠券给他满1000减100,肯定比满200减20过瘾。那个用户还没有消费过,要用首单优惠刺激他。还有用户有段时间不消费了,运营们得加把劲营销。上面东西从更高的视野看,是一连串效果、ROI、盈利的评估。这就是用数据做运营策略。

CRM又能和客服中心结合,电话号码肯定和用户的数据绑定,VIP用户电话进来了,我们选客户主管去接待,宾至如归。普通用户呢,也不能粗心,客服至少需要通过后台的用户画像知道这个用户是什么情况,这也有针对性的服务。数据运营体系不止服务于运营和产品的。

系统化,要求的是我们把运营的整个过程和策略流程也当作一款产品去缔造:哪些方法好用,哪些手段效果好,哪种活动能持续做,把这些都固定下来,打造出一个运营用的产品后台,作为日常和招数。这种系统化思维也叫「复用」,之后则是把系统做得越来越自动,功能越来越强大,也是另外一种精益了。

以上种种,是将数据、产品运营、系统和人员四者结合起来。系统之所以是系统,就是脱离了粗放的阶段,一切皆是有序、规则和充满策略。数据就是系统的润滑剂,你没有数据,怎么能有选择性的发券、做活动、推送,维护用户呢?

数据产品层加工出来的各类标签、用户画像、模型…就是要在数据运营层最大化的被员工使用。数据本身没有价值,变成策略才有价值。

这三条要点总结一下:我们系统化的使用各种加工后的数据,以精细和精细为手段目标,以把握未来为方向,指定运营策略。这是数据运营层的核心。

04

用户触达

 

我们整个体系进行到最后的环节,它需要面向用户。数据收集得再多、加工得再好,运营得再努力,如果不将它们传递给用户,体系就是失败的。

整个体系的前三层用户都感知不到。用户直接感知到的是产品的推送通知、Banner、广告位、活动、文案、商品的展示顺序等。在与产品交互的过程中,用户会以直接的反馈表达自己喜恶。

感兴趣的会点击,喜爱的会够买,讨厌的会退出…这些构成了新一轮的行为数据,也构成了反馈指标:点击率、转化率、跳出率、购买率等。这些指标就是用户触达层的结果体现,也是数据化运营的结果体现。

好与不好,都需要验证。

结果不是终点。管理学有个概念叫PDCA,翻译成中文是计划-执行-检查-改进,以此为循环。用户触达层不是数据化运营体系的结束,它是另外一种开始。通过反馈获得的数据去优化去改进。

我的点击率5%,那么我能不能通过运营优化,达到10%?用户接受推送后选择了卸载,我们有什么方法挽回?留存率被提高,这种策略能不能应用到其他用户上面。

也许我们数据化运营后,不会获得一个满意的结果,但如果我们连优化改进都不去做,那么连好的机会都不会有。

你看,优秀的员工,不会以数据化运营的结果沾沾自喜,而是进行新一轮的开始。

是终点,又是起点,此过程就是迭代,是体系的核心。

长按识别左侧二维码

关注酷炫广告

更多精彩资讯等着你~

公众号ID:cool_hyun999